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State estimation for anaerobic digesters using the ADM1

D. Gaida, C. Wolf, C. Meyer, A. Stuhlsatz, J. Lippel, T. Bäck, M. Bongards

and S. McLoone
ABSTRACT
The optimization of full-scale biogas plant operation is of great importance to make biomass a

competitive source of renewable energy. The implementation of innovative control and optimization

algorithms, such as Nonlinear Model Predictive Control, requires an online estimation of operating

states of biogas plants. This state estimation allows for optimal control and operating decisions

according to the actual state of a plant. In this paper such a state estimator is developed using a

calibrated simulation model of a full-scale biogas plant, which is based on the Anaerobic Digestion

Model No.1. The use of advanced pattern recognition methods shows that model states can be

predicted from basic online measurements such as biogas production, CH4 and CO2 content in the

biogas, pH value and substrate feed volume of known substrates. The machine learning methods

used are trained and evaluated using synthetic data created with the biogas plant model simulating

over a wide range of possible plant operating regions. Results show that the operating state vector of

the modelled anaerobic digestion process can be predicted with an overall accuracy of about 90%.

This facilitates the application of state-based optimization and control algorithms on full-scale biogas

plants and therefore fosters the production of eco-friendly energy from biomass.
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INTRODUCTION
Anaerobic digestion is a process by which biomass is con-
verted to biogas, which mainly consists of methane (CH4),

carbon dioxide (CO2) and hydrogen (H2). In biogas plants
this process is used to produce energy by either burning the
biogas in cogeneration units and supplying the energy to

the national grid or by the processing of biogas to natural
gas quality for supply to the local gas distribution system.
Despite the high potential of biogas production from biomass

in biogas plants, to contribute significantly to the European
Renewable Energy Policy (Directive 2009/28/EC of the
European Parliament ), plant operation is far from opti-

mal in most cases (Schmitz ). The reasons are obvious.
Not only is anaerobic digestion a highly complex and non-
linear dynamic process but most biogas plants suffer from a
lack of robust online-measurement systems for close process
monitoring (Wiese & König ). Unfortunately, non-
standard measurement equipment for critical process par-

ameters such as organic acid concentrations and buffer
capacity are too expensive and require extensive main-
tenance and expert knowledge from plant operators.

Consequently only basic measurement systems are available
on the typical agricultural biogas plant. Typically, just biogas
production, biogas composition, pH value, redox potential,

total solids content and temperature sensors are available
(Etzkorn ). This makes optimal control and optimization
of anaerobic digestion processes very difficult and

challenging.
As hardware measurement sensors are expensive, an

alternative approach is to explore soft-sensing of key process
variables (Fortuna et al. ). These soft-sensors provide
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predictions of difficult to measure variables from basic

(more accessible) process measurements by assuming that
a relationship exists between key and basic plant measure-
ments, which can be modelled (Bernard et al. ). In

this paper such a soft sensor is developed to estimate vari-
ables describing the internal state of a biogas plant, thus
providing a state estimator for biogas plants.

The developed state estimator can be seen as a static func-

tion, which estimates the current internal state of the
anaerobic digestion process based on current and past
measurement data of a biogas plant. The main advantage of

this approach compared with conventional state estimation
filters (Rawlings & Bakshi ) is that an initial guess of
the initial state of the biogas plant is not necessary. To

allow for good practical applicability only those measure-
ment variables are considered, which are commonly
measured on most biogas plants. Thus, biogas production,
methane and carbon dioxide content in the biogas, pH

value inside the digesters and the amount of each substrate
fed to the fermentation tanks are considered in this approach.

Discriminant analysis and classification based pattern

recognition methods are used to find the static mapping
function, i.e. the pattern, between the measurement data
and the internal anaerobic digestion state. As discriminant

analysis methods the well-known Linear Discriminant
Analysis (LDA) and the newly developed Generalized
Discriminant Analysis (GerDA) (Stuhlsatz et al. a) are
used to extract optimal classifiable features from the
measurements. Classification of the resulting features is
then performed using a linear classifier. Furthermore,
Random Forest is investigated for classification of the raw

measurements without a feature extraction step.
As the internal states of the anaerobic digestion process

are not measurable using standard measurement equipment,

the data used for training and evaluating the pattern recog-
nition methods under investigation has to be created
synthetically. Therefore a detailed simulation model of a

full-scale agricultural biogas plant is developed using the
widely used Anaerobic Digestion Model No. 1 (ADM1) (Bat-
stone et al. ). Thus, the internal state of anaerobic

digestion is defined by the ADM1 state vector. In Gaida
et al. (b) a Nonlinear Model Predictive Control
(NMPC) scheme is developed to optimally control full-
scale biogas plants. This NMPC method requires an online

estimate of the plant’s current operating state. Thus, a com-
bination of the proposed state estimator and the NMPC
method will make it possible to deploy NMPC in practice

and thus facilitate the control of full-scale biogas plants in
the near future.
The remainder of the paper is structured as follows. In

the next section the biogas plant model, the dataset and
the machine learning methods employed are briefly
described. Then the results obtained with the proposed

state estimation scheme using the various pattern recog-
nition methods are presented and analysed.
MATERIALS AND METHODS

This section describes the real full-scale biogas plant, the
dynamic simulation model and the synthetically generated

dataset. The pattern recognition methods used to learn
the mapping function of the state estimator are also
introduced.
The biogas plant

The biogas plant under consideration is a full-scale agri-
cultural biogas plant with an electrical power output of

750 kW located in Germany. The plant contains two diges-
ters with a volume of about 3,000 m³ each. Only the first
digester is fed with substrates including maize, grass and
manure.

To create the synthetic dataset a simulation model is
developed and calibrated for this biogas plant. Modelling
anaerobic digestion using the complex ADM1 has proven

to be a very good and all-round approach (Lübken et al.
; Page et al. ; Koch et al. ). The ADM1 is com-
monly implemented as a non-linear differential equation

system of the form:

x0 tð Þ ¼ g x tð Þ;u tð Þð Þ; system function:

g : Rn × Ru ! Rn

y tð Þ ¼ h x tð Þ;u tð Þð Þ; measurement function:

h : Rn × Ru ! Rm

(1)

Here the, time t ∈ Rþ dependent input vector function
u :R ! Ru is defined by the volume flows Qsubstrate ∈ R
of the u ¼ 5 available substrates, which are measured in
m³/d, that is:

u ¼ Qmaize, Qmanure, Qsiloseepage, Qgrass, Qmanuresolids
� �T (2)

The physical and chemical parameters of the sub-
strates are assumed to be constant, so that the developed

estimator only yields valid results for substrate charac-
teristics the estimator has learned during training. The
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output vector function y :R ! Rm is composed of the

simulated pH values inside the two digesters pH1, pH2ð Þ,
the produced biogas volume flows Qbiogas,1, Qbiogas,2

� �
and

the relative amount of methane and carbon dioxide

VCH4,1, VCH4,2, VCO2,1, VCO2,1
� �

in the produced biogas.
Thus, in total there are m ¼ 8 measurement variables, four
for each digester:

y ¼ pH1, Qbiogas,1, VCH4,1, VCO2,1, pH2, Qbiogas,2,
�
VCH4,2, VCO2,2

�T (3)

It is important to note that output vector function y and
input vector function u were chosen deliberately so that they

contain process parameters, which are measured in practice
on almost every biogas plant. The n ¼ 37 components of the
ADM1 state vector x :R ! Rn are shown in Figure 1 in the
results section.

The simulation model of the biogas plant is developed
in MATLAB®/Simulink (Gaida et al. a). The ADM1 par-
ameters are set to standard values, except for the parameters

KS,c4, km,pro, km,ac, KI,NH3 and km,h2, as recommended in
Wichern et al. (, ).

The characterization of the ADM1 input stream is based

on the following measurements, which have been performed
for all substrates. In laboratory analysis, total chemical
oxygen demand (COD), filtered COD, pH value, total
solids, total organic solids and ammonium-nitrogen (NH4-

N) were measured separately for each substrate.
The reliability of the model as a predictor of real plant

behaviour is evaluated by comparing real measurements of

the plant with simulated results. As measurements, pH
value, biogas production and composition (CH4, CO2),
and energy production of the cogeneration units are used.

Furthermore, organic acid concentration and VFA/TA
(Schoen et al. ) are validated periodically by compari-
son of simulated and real measurement values from

laboratory analysis.
Having obtained comparable results (Wolf & Bongards

), it is assumed that the simulated state of the simulation
model is describing the real internal state of the real biogas

plant well enough to work with the model as a substitute for
the real biogas plant.
The dataset

As anaerobic digestion is a dynamic process which heavily

depends on past states and substrate feeds, past output
and substrate feed measurements are used as additional
inputs to the static estimation function in the form of a

tapped delay line (TDL) with a sampling rate of 6 hours.
To reduce the impact of noise, the candidate inputs
were selected as moving average estimates of the output

measurements taken over intervals of 0.5, 1, 3, 7, 14, 21
and 31 days and the substrate feed values over 0.5, 1, 3,
7 and 14 days. At each time instant, ti ∈ R, these signals
are combined with the current values to form vectors

yext tið Þ ∈ Rm� mFþ1ð Þ and uext tið Þ ∈ Ru� uFþ1ð Þ for the output
and substrate feed measurements, respectively. Here
mF ¼ 7 (the number of moving average output measure-

ments) and uF ¼ 5 (the number of moving average
substrate feed measurements).

The identification of the optimal number and combi-

nation of moving average inputs in the TDL are investigated
in the results section. The final measurement matrix has
m � mF þ 1ð Þ columns for the output measurement vector
and u � uF þ 1ð Þ columns for the substrate feed measurement

vector, i.e. in total D :¼ m � mF þ 1ð Þ þ u � uF þ 1ð Þ ¼ 94
columns are created. We call this matrix Y ∈ RN×D:

Y :¼
yext t1ð ÞT, uext t1ð ÞT

..

.

yext tNð ÞT, uext tNð ÞT

2
664

3
775 (4)

where N ∈ Nþ is the number of recorded simulation time

instances at a sampling time of 6 hours.
In total 75 simulations each lasting 950 days were per-

formed with randomly varying substrate mixtures (defined
by u), leading to N ¼ 275, 850 samples. The values of each

substrate flow were restricted to remain between a lower
and an upper bound as can be seen in the left part of
Table 1. In the right section of the table the resulting

ranges of the measurement values y are shown.
To be able to apply discriminant analysis and classifi-

cation methods on the dataset the range for each state

vector component xj is clustered into C ¼ 10 equally distrib-
uted classes, j ¼ 1, . . . , n. Thus, vectors are generated
containing the class labels corresponding to the simu-
lated values of the state vector components xj for each

digester, that is, ϑ1,j ∈ {1, . . . , C}N and ϑ2,j ∈ {1, . . . , C}N ,
j ¼ 1, . . . , n.
METHODS

The complete dataset Y ∈ RN×D is split into a training
dataset YT ∈ RNT×D and a validation dataset YV ∈ RNV×D
www.manaraa.com



Figure 1 | Comparison of the MCR of the state estimators for each digester using GerDA, LDA and RF: (a) digester 1; (b) digester 2. The * next to some of the x-axis labels signifies that for

these state vector components only a C� 1 classification problem was solved, due to insufficient data support for some of the classes. This was addressed by merging such

classes with their neighbour class. The best classifier is defined by a combination of the best performing methods for each state vector component.
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with NV :¼ N �NT, NT <N. In total five training and five
validation datasets are created using five-fold cross-vali-

dation. Each training dataset contains the data from 15
selected simulations and thus the validation dataset con-
tains the data from the remaining 60 simulations. In the

following, the machine learning methods used are briefly
described.
LDA

Linear Discriminant Analysis searches for a linear trans-
formation A ∈ Rd×D, d � D, such that the transformed
data Z ¼ A � YT

T, Z :¼ z1, . . . , zNTð Þ ∈ Rd×NT , can be linearly

separated better than the original feature vectors
YT ¼ y1, . . . , yNT

� �T. The linear transformation A is
www.manaraa.com



Table 1 | Range of the measurement matrix Y. Remark: Silo seepage is soaking inside the manure tank, where it has an assumed concentration of 1%, which leads to the bounds below

Component Min Max Unit Component Min Max Unit

Qmaize 10.0 60.0 t/d pH1 7.07 7.51 –

Qmanure 20.0 110.0 m³/d Qbiogas,1 2,205.02 9,923.96 m³/d

Qsiloseepage 0.15 1.15 m³/d VCH4,1 45.83 55.86 %

Qgrass 0.0 10.0 t/d VCO2,1 44.13 54.16 %

Qmanuresolids 0.0 10.0 t/d pH2 7.36 7.71 –

Qbiogas,2 171.47 1,603.26 m³/d

VCH4,2 57.60 67.97 %

VCO2,2 32.03 42.40 %
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determined by solving an optimization problem maximizing
the well-known Fisher discriminant criterion:

trace S�1
T � SB

n o
(5)

where ST is total scatter-matrix and SB is the between-class
scatter-matrix for the data (Duda et al. ). The LDA and

a subsequent linear classifier are both implemented in
MATLAB®. An LDA transformation into a feature space of
d ¼ C � 1 dimensions led to the best subsequent linear classi-

fication results.

GerDA

LDA is a popular pre-processing and visualization tool used
in different pattern recognition applications. Unfortunately,
LDA followed by linear classification produces high error

rates on many real world datasets, because a linear mapping
A cannot transform arbitrarily distributed features into
independently Gaussian distributed ones. A natural general-

ization of the classical LDA is to assume a function space F
of nonlinear transformations f :RD ! Rd and to still rely on
having intrinsic features Z :¼ f Yð Þ with the same statistical

properties as assumed for LDA features. The idea is that a
sufficiently large space F potentially contains a nonlinear
feature extractor f� ∈ F that increases the discriminant cri-

terion (5) compared with a linear extractor A.
GerDA defines a large space F using a Deep Neural

Network (DNN), and consequently the nonlinear feature
extractor f� ∈ F is given by the DNN which is trained

with measurements of the data space such that the objective
function (5) is maximized. Unfortunately, training a DNN
with standard methods, like back-propagation, is known to

be challenging due to many local optima in the considered
objective function. To efficiently train a large DNN with
respect to (5), in Stuhlsatz et al. (a, b) a stochastic
pre-optimization has been proposed based on greedily

layer-wise trained Restricted Boltzmann Machines (Hinton
et al. ). After layer-wise pre-optimization all weights
W and biases b of the GerDA-DNN are appropriately

initialized. Nevertheless, pre-optimization is suboptimal in
maximizing (5), thus a subsequent fine-tuning of the
GerDA-DNN is performed using a modified back-propa-
gation of the gradients of (5) with respect to the network

parameters. In Stuhlsatz et al. (a, b) it is shown that
stochastic pre-optimization and subsequent fine-tuning
yields very good discriminative features and training time

is substantially reduced compared with random initializa-
tion of large GerDA-DNNs.

For the extraction of intrinsic features from the raw

measurements, we used GerDA with a D� 200�
100� 50� d topology, i.e. a five-layer DNN consisting of
one input layer with D units, three hidden layers with 200,
100 respectively 50 units and one output layer with d units

resulting in more than 900 million free parameters, with
d ¼ C. To avoid overfitting the training data, fine-tuning
was terminated after the pre-training stage using an early-

stopping criterion dependent on the training error. The
GerDA-framework is implemented in MATLAB®.
Random Forest

Random Forest is an efficient algorithm for solving complex
classification and regression problems based on forming an
ensemble of unpruned decision trees (Breiman ). Classi-

fication is performed by taking the majority vote of an
ensemble of classification trees, where each tree is trained
on a bootstrapped sample of the original training dataset.

In this paper the number of decision trees in the forest is
set to 15. The Random Forest algorithm used is from the
www.manaraa.com
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Random Forest implementation for MATLAB® (and Standa-

lone) (Jaiantilal ).
RESULTS

To evaluate the performance of the different methods on the
validation datasets the misclassification rate (MCR) is used
as a performance measure. This measure is defined as:

MCR :¼ 100 � 1� 1
NV

�
XNV

i¼1

1 yið Þ
 !

;

1 yið Þ :¼ 1 if classified correctly

0 otherwise

� (6)

In Figure 1 detailed validation results for each state
vector component of both digesters (MCR1 and MCR2)
are displayed using all three machine learning methods

mentioned above. As GerDA is currently implemented
using MATLAB® scripts, training for one state vector
component takes approximately eighteen hours on a com-

puter with Intel® Xeon® CPU X5550 (2.67 GHz) and 24
GB RAM due to the large amount of data and compu-
tational complexity of the algorithm. Nevertheless, as

GerDA reveals very good results all components are eval-
uated using GerDA. If time is an issue then a compromise
that can be considered is to only use GerDA to evaluate

those components, which are inadequately evaluated
using Random Forest or which are identified a priori to
be especially important components. Validation however
is a matter of seconds for all three methods such that

the state estimator is well suited for the use in an online
control loop. Currently, the best classifier is a combi-
nation of Random Forest, GerDA and LDA, with a

mean MCR of MCR1¼ 7.83% (±4.43%) and MCR2¼
9.44% (±6.64%), as can be seen in the figures as well as
in Table 2.
Table 2 | Performance comparison of the state estimators based on the investigated

methods

Method
MCR1 (± std. dev.)
[%]

MCR2 (± std. dev.)
[%]

LDA 27.20 (±12.30) 26.50 (±14.49)

Random Forest 13.16 (±8.05) 12.43 (±7.85)

Random Forest, GerDA &
LDA

7.83 (±4.43) 9.44 (±6.64)
From the results, it is apparent that the MCR for Snh4

and Scat is quite high for both digesters and is greater
than 30% for Scat in the second digester. To estimate the
expected estimation error the sum over the range of one

class and the maximal standard deviation over the rows of
the confusion matrix for both components are calculated
separately. For Snh4 the range over one class plus the maxi-
mal standard deviation is 199 and 229 mg/L for the first and

second digester, respectively. With respect to the mea-
surement range on biogas plants, this range is the same
order as the resolution of ion-selective online NH4-N

measurement sensors, so that in practical terms the expected
estimation error is quite small (Hach Lange ). For Scat
the sum over the range of one class and the maximal stan-

dard deviation for the second digester approximately
evaluates to 24 mg/L, thus the expected estimation error
can be seen as quite small as well (Gerardi ).

Results for parameter investigations

In this section the functional dependency of the results on

the number of past measurements in the TDL and the
time slots to calculate the average of the past measurements
is investigated. In total 32 different configurations of moving

horizon filters, by varying amount and window size, are
tested using Random Forest. This aspect is done by omitting
filters from the original setting. In total for the first digester a

mean MCR over the 32 configurations of 13.59% (±0.74%)
and for the second digester a mean of 13.16% (±1.18%) was
evaluated. The results reveal that the MCR of the state esti-
mator increases more significantly when omitting output

filters than when omitting substrate feed filters, when con-
sidering only the number of filters and not their window
size. This situation is especially true for the second unfed

digester, because its behaviour depends only indirectly on
the substrate feed. The best result was found by omitting
the ‘31 d’ output filter and the ‘0.5 d’ substrate feed filter

from the original setting, resulting in a mean MCR perform-
ance of 12.99% (±8.05%) and 12.67% (±8.31%) for the first
and second digester, respectively.

As a further test, the performance of the Random
Forest based state estimator was evaluated using noisy
measurement data by adding normally distributed ran-
dom noise to all plant measurements. This showed that

the MCR of the state estimator for both digesters increased
by a maximum of about 4% for an increase in the measure-
ment noise of up to 10%. Thus, the state estimator also

seems to yield reliable results, when applied to noisy
measurements.
www.manaraa.com
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CONCLUSION

This paper shows that the state of the ADM1 biogas plant

model can be predicted using basic pH, biogas production,
CH4 and CO2 content and substrate feed measurements
that are normally available on commercial biogas plants.
Using a combination of Random Forest, GerDA and LDA

a good state estimator can be built yielding a MCR of less
than 10%. If the simulation model is calibrated for a full-
scale biogas plant, as is the case in this paper, the developed

state estimator can be implemented online on the plant to
gain important information concerning the state of the
plant. It is planned to include the developed state estimator

in an online NMPC loop for an agricultural biogas plant in
the near future.
REFERENCES

Batstone, D. J., Keller, J., Angelidaki, I., Kalyuzhnyi, S. V.,
Pavlostathis, S. G., Rozzi, A., Sanders, W. T. M., Siegrist, H.
& Vavilin, V. A.  Anaerobic Digestion Model No.1
(ADM1) (Scientific and Technical Report No. 13). IWA Task
Group for Mathematical Modelling of Anaerobic Digestion
Processes, IWA Publishing, London.

Bernard, O., Polit, M., Hadj-Sadok, Z., Pengov, M., Dochain, D.,
Estaben, M. & Labat, P.  Advanced monitoring and
control of anaerobic wastewater treatment plants: software
sensors and controllers for an anaerobic digester. Water
Science and Technology 43 (7), 175–182.

Breiman, L.  Random Forests. Machine Learning 45 (1), 5–32.
Duda, R. O., Hart, P. E. & Stork, D. G.  Pattern Classification

(2nd edn). John Wiley & Sons, New York.
Etzkorn, C.  Modellierung, messtechnische Analyse und

praktische Untersuchung des Fermentationsprozesses an
industriellen und landwirtschaftlichen Biogasanlagen
(Modelling, Metrological Analysis and Practical Investigation
of the Fermentation Process on Industrial and Agricultural
Biogas Plants). Diploma Thesis, Cologne University of
Applied Sciences, Gummersbach.

Directive 2009/28/EC of the European Parliament and of the
Council of 23 April 2009 on the promotion of the use of
energy from renewable sources and amending and
subsequently repealing Directives 2001/77/EC and 2003/30/
EC, European Parliament 2009.

Fortuna, L., Graziani, S., Rizzo, A. & Xibilia, M. G.  Soft
Sensors for Monitoring and Control of Industrial Processes.
Springer Verlag.

Gaida, D., Wolf, C., Bongards, M. & Bäck, T. a MATLAB
toolbox for biogas plant modelling and optimization. In:
Progress in Biogas II – Biogas Production from Agricultural
Biomass and Organic Residues. FnBB e.V. (Fördergesellschaft
für nachhaltige Biogas – undBioenergienutzung e.V.). German
Society for sustainable Biogas and Bioenergy Utilization,
Stuttgart, Vol. 2, pp. 67–70.

Gaida, D., Sousa Brito, A. L., Wolf, C., Bäck, T., Bongards, M. &
McLoone, S. b Optimal control of biogas plants using
nonlinear MPC. In: ISSC 2011, vol. 1, pp. 219–224.

Gerardi, M. H.  The Microbiology of Anaerobic Digesters (1st
ed.). Wastewater Microbiology Series. Wiley-Interscience,
Hoboken, NJ.

Hach Lange  AN-ISE sc: Combination sensor for ammonium
and nitrate: Data Sheet. Data Sheet. Retrieved from
http://www.fr.hach-lange.be/shop/action_q/download%
3Bdocument/DOK_ID/14791228/type/pdf/lkz/BE/spkz/
nl/TOKEN/hrBDyMZFRi6xL-h8VgF5PfN1BAM/M/
ZWZYLQ.

Hinton, G. E., Osindero, S. & The, Y. W.  A fast learning
algorithm for deep belief nets. Neural Computation 18 (7),
1527–1554.

Jaiantilal, A.  randomforest-matlab (Version 0.02). Retrieved
from http://code.google.com/p/randomforest-matlab/.

Koch, K., Lübken, M., Gehring, T., Wichern, M. & Horn, H.
 Biogas from grass silage – measurements and
modeling with ADM1. Bioresource Technology 101 (21),
8158–8165.

Lübken, M., Wichern, M., Schlattmann, M., Gronauer, A. &
Horn, H. Modelling the energy balance of an anaerobic
digester fed with cattle manure and renewable energy crops.
Water Research 41 (18), 4085–4096.

Page, D. I., Hickey, K. L., Narula, R., Main, A. L. & Grimberg, S. J.
 Modeling anaerobic digestion of dairy manure using the
IWA Anaerobic Digestion Model No. 1 (ADM1). Water
Science and Technology 58 (3), 689–695.

Rawlings, J. B. & Bakshi, B. R.  Particle filtering and moving
horizon estimation. Computers and Chemical Engineering 30
(10–12), 1529–1541.

Schmitz  Landwirtschaftskammer NRW (Chamber of
Agriculture for North Rhine Westphalia).

Schoen, M. A., Sperl, D., Gadermaier, M., Goberna, M., Franke-
Whittle, I., Insam, H., Ablinger, J. &Wett, B.  Population
dynamics at digester overload conditions. Bioresource
Technology 100 (23), 5648–5655.

Stuhlsatz, A., Lippel, J. & Zielke, T. a Discriminative feature
extraction with deep neural networks. In: Proceedings of the
2010 International Joint Conference on Neural Networks
(IJCNN), Barcelona, Spain.

Stuhlsatz, A., Lippel, J. & Zielke, T. b Feature extraction for
simple classification. In: Proceedings of the International
Conference on Pattern Recognition (ICPR). Istanbul, Turkey.

Wichern, M., Lübken, M., Koch, K., Gehring, T., Horn, H.,
Fischer, K., Schlattmann, M. & Gronauer, A.  Eignung
des Anaerobic Digestion Model No. 1 (ADM 1) zur
Prozesssteuerung landwirtschaftlicher Biogasanlagen
(Applicability of the Anaerobic Digestion Model No. 1
(ADM 1) for process control of agricultural biogas plants).
Gülzower Fachgespräche – Messen, Steuern, Regeln bei der
Biogaserzeugung 27, 172–194.

Wichern, M., Gehring, T., Fischer, K., Andrade, D., Lübken, M.,
Koch, K., Gronauer, A. & Horn, H.  Monofermentation
www.manaraa.com

http://www.fr.hach-lange.be/shop/action_q/download%3Bdocument/DOK_ID/14791228/type/pdf/lkz/BE/spkz/nl/TOKEN/hrBDyMZFRi6xL-h8VgF5PfN1BAM/M/ZWZYLQ
http://www.fr.hach-lange.be/shop/action_q/download%3Bdocument/DOK_ID/14791228/type/pdf/lkz/BE/spkz/nl/TOKEN/hrBDyMZFRi6xL-h8VgF5PfN1BAM/M/ZWZYLQ
http://www.fr.hach-lange.be/shop/action_q/download%3Bdocument/DOK_ID/14791228/type/pdf/lkz/BE/spkz/nl/TOKEN/hrBDyMZFRi6xL-h8VgF5PfN1BAM/M/ZWZYLQ
http://www.fr.hach-lange.be/shop/action_q/download%3Bdocument/DOK_ID/14791228/type/pdf/lkz/BE/spkz/nl/TOKEN/hrBDyMZFRi6xL-h8VgF5PfN1BAM/M/ZWZYLQ
http://www.fr.hach-lange.be/shop/action_q/download%3Bdocument/DOK_ID/14791228/type/pdf/lkz/BE/spkz/nl/TOKEN/hrBDyMZFRi6xL-h8VgF5PfN1BAM/M/ZWZYLQ
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://code.google.com/p/randomforest-matlab/
http://code.google.com/p/randomforest-matlab/
http://dx.doi.org/10.1016/j.watres.2007.05.061
http://dx.doi.org/10.1016/j.watres.2007.05.061
http://dx.doi.org/10.1016/j.compchemeng.2006.05.031
http://dx.doi.org/10.1016/j.compchemeng.2006.05.031
http://dx.doi.org/10.1016/j.biotech.2009.06.033
http://dx.doi.org/10.1016/j.biotech.2009.06.033
http://dx.doi.org/10.1016/j.biotech.2008.09.030


1095 D. Gaida et al. | State estimation for anaerobic digesters Water Science & Technology | 66.5 | 2012
of grass silage under mesophilic conditions: measurements
and mathematical modeling with ADM 1. Bioresource
Technology 100, 1675–1681.

Wiese, J. & König, R.  From a black-box to a glass-box
system: the attempt towards a plant-wide automation
concept for full-scale biogas plants. In: Water Science and
Technology (H. Kroiss, ed.). London, IWA Publishing,
pp. 321–327.

Wolf,C.&Bongards,M. ModellbasierteProzessoptimierungvon
Biogasanlagen (MOBIO) (Model-based process optimisation of
biogas plants). Final report. Cologne University of Applied
Sciences & PlanET GmbH, Gummersbach, Germany.
First received 15 February 2012; accepted in revised form 16 April 2012
www.manaraa.com

http://dx.doi.org/10.1016/j.biotech.2008.09.030
http://dx.doi.org/10.1016/j.biotech.2008.09.030


www.manaraa.com

Reproduced with permission of copyright owner.
Further reproduction prohibited without permission.


	State estimation for anaerobic digesters using the ADM1
	INTRODUCTION
	MATERIALS AND METHODS
	The biogas plant
	The dataset

	METHODS
	LDA
	GerDA
	Random Forest

	RESULTS
	Results for parameter investigations

	CONCLUSION
	REFERENCES


